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Generally, information required for approval of new drugs
is dichotomous in that the drug is either efficacious and safe
or not. Consequently, the purpose of most confirmatory
clinical trials is to test the null hypothesis. The primary
reasons for designing hypothesis testing trials are to provide
the information required for approval using analyses
techniques that are relatively straightforward and free of
apparent assumptions. However, the information required
for approval is very different from that used by prescribers
for decision making. In the clinic, decisions must be made
about dose adjustment for individual patients in the
presence of additional therapies and co-morbidities.
Choice of drug and dosing regimen is therefore a classical
risk to benefit decision that is often poorly informed from
the results of confirmatory trials. Therefore, providing
answers to the more difficult question of how to use the
drug in a clinical setting is essential.

Sheiner1,2 and others3 suggested that greater statistical power
can be achieved through the use of alternative hypotheses
that test accepted scientific models of disease and response
rather than simply testing the null hypothesis where the sole
covariate in question is the presence of the study drug.
Evaluating the dose-response surface involves developing
disease progression and drug effects models, and is described
by Sheiner as a part of the learning and confirming process in
drug development.4

Modeling involves developing mathematical equations to
describe quantitative relationships for individuals or popula-
tions. These equations can be used to predict the time course
of disease and drug effects in settings other than those
explicitly studied. NONMEM (NONlinear Mixed Effects
Modeling) is a program that allows model building to be
performed using a population approach.5 One important
feature of population analyses is the ability to describe
between-subject variability, and to account quantitatively for

covariate influences, such as weight, which can explain some
of this variability.

The concept of evaluating disease progression through
model-based evaluations is not new. In a work published in
1981 by Holford and Sheiner,6 the authors proposed a new
meaning for an old model:

E tð Þ ¼ E0 þ
EmaxCp tð Þ

EC50 þ Cp tð Þ ð1Þ

where E(t) represents a measure of disease status at time t and
E0 represents the baseline disease status measurement. Emax

and EC50 are parameters representing the maximal achievable
drug effect and the drug concentration at half maximal
response, respectively, and Cp(t) is the predicted (plasma)
drug concentration. In these terms, equation (1) represents a
‘‘zero progression’’ model for disease status such that over the
course of evaluation, the observed disease status does not
change except through therapeutic intervention.

However, there is ample evidence that disease status often
does not remain stable over the course of a clinical trial. For
example, Griggs et al.7 described the results of a randomized,
placebo controlled trial of prednisone in 99 boys aged 5–15
years with Duchenne muscular dystrophy, and reported that
muscle strength decreased in the placebo group over 6
months of observation (Figure 1). In this study, the ‘‘zero
progression’’ model was generalized to allow for disease status
to change linearly over time (equation (2)):

SðtÞ ¼ S0 þ at ð2Þ
where S(t) is the disease status at some time t, S0 represents
the baseline disease status, and a represents the rate of change
(slope) of disease status.

The linear model of disease progression was further
modified by the addition of an ‘‘effect compartment’’,8 in
order to allow for a delay between the initiation of treatment
and the time to observable response (equation (3)).

S tð Þ ¼ S0 þ EOFF CeAð Þ þ at ð3Þ
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where EOFF(CeA) represents a drug effect that provides
symptomatic benefit as a transient improvement (offset) in
the disease status during treatment, but which predictably
reverses to the untreated status after treatment is discon-
tinued. Conversely, the effect of treatment can be described as
altering the progression of disease (equation (4))

S tð Þ ¼ S0 þ EPROG tð Þ þ að Þt ð4Þ
where EPROG(t) is the effect of treatment on the progress of
disease, modifying the slope of the disease progression. In
this model, the disease status would not return to the
pretreatment course when therapy was discontinued, but
would be expected to result in a permanent improvement
(Figure 2). Several publications give good overviews of
disease progression models and associated parameterizations
for describing treatment effects.9,10

Linear equations have been used to describe the progres-
sion of several diseases, including Alzheimer’s disease and
schizophrenia.11,12 In these models, the disease progression
component included a placebo response model, incorporat-
ing both the trajectory of disease as well as a transient change
in disease status attributed to placebo response. It is

important to note that there are differences between a true
placebo effect and a perceived placebo effect.13 The perceived
placebo effect is a mixture of several factors, including a
natural tendency for individuals to regress to their mean
status, introduction of unidentified parallel interventions,
and a true placebo effect. This distinction coincides with the
approach taken with disease progression modeling, which
attempts to describe the natural time course of the disease as
well as the effect of placebo.9

As mentioned previously, models for disease progression
characteristically have high unexplained between-subject
variability. This is consistent with the observation that
between-subject variability is greater for pharmacodynamic
than pharmacokinetic evaluations.14,15 In some cases, mea-
sures of disease status are based on summary scores, such as
the Hamilton depression score (HAM-D), a composite score
measuring the severity of depressive symptoms. The HAM-D
score consists of either 17 or 21 items for which an
interviewer provides ratings for selected symptoms, including
overall depression, guilt, suicide, insomnia, and other
symptoms. Perhaps as a consequence of the multiple ratings
used to generate the summary score, evaluations of depres-
sion scores tend to have high variability, making evaluation of
data from clinical trials in depression difficult using
traditional empirical methods. However, model-based eva-
luations should provide a better tool to detect drug effect
because these evaluations naturally allow disease severity to
change over time.

Another potential benefit of modeling is that more
informative clinical trial designs can be developed using
optimal design techniques. These techniques are based on
evaluating the population Fisher information matrix for any
model, given some set of design variables. Maximizing its
determinant, a summary measure of the overall information
matrix, is called D-optimal design, which is based on the
seminal work of Mentre et al.,16 and updated by Retout
et al.17

When performing an empirical evaluation of clinical trials
of antidepressants, the considerable variability in HAM-D
and the pronounced placebo response, which may itself be
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affected by the trial design, yields a high failure rate. This
failure is not necessarily because the antidepressant is
ineffective, but often results from an inability to extricate
drug effect from the placebo response.18,19 Fifty-two
randomized, double-blind, placebo-controlled pivotal clinical
trials were evaluated to correlate placebo response as the
percentage mean change from baseline in HAM-D score with
trial outcome.20 It was found that in trials with a greater than
30% mean change from baseline in the placebo group, only
21.1% of the trials found active treatment superior to
placebo. However, in trials with a smaller placebo response,
more trials (74.2%) showed superiority of active treatment.
Thus, the magnitude of placebo response in depression trials
is variable and has a considerable impact on the power of
antidepressant trials to evaluate the effect of active treatment.

The choice of statistical methods has also been cited as a
factor in identifying the effect of active treatment,21 and
exploiting advances in statistical techniques has been
recommended.22 The use of disease progression modeling
therefore constitutes an important tool in the evaluation of
drug effect, particularly when the placebo response is
substantial and/or the data are highly variable.

EXAMPLE CASE STUDY

Clinical trials evaluating the effect of novel antidepressants
make a good example for comparing the power of model-
based evaluation to traditional evaluation of drug effect.
Several models have been proposed for evaluating the time
course of depression and the associated placebo response,
including the inverse Bateman model23,24 and the K-PD
model.25–27 Shang et al.28 evaluated these models and also a
two-transit-compartment model (Figure 3)29 for their ability
to describe the time course of placebo response. This
evaluation suggested that the transit model had better
characteristics than the inverse Bateman function or the
K-PD model. The influence of placebo was handled by
creating a driver for the placebo effect in the form of a one-
compartment model with bolus input and first-order
elimination. The parameter estimates for the placebo model
are presented in Table 1. Placebo was dosed at a daily unit
dose to mimic placebo treatment schedules. The parameters
used for the pharmacokinetic model (equation (5)) were
selected to ensure that concentrations of placebo were close
to zero at the end of each day.

dCplacebo

dTime
¼ �CLplacebo Cplacebo

Vplacebo
ð5Þ

where Cplacebo is the predicted placebo ‘‘concentration’’,
CLplacebo and Vplacebo are the ‘‘clearance’’ and ‘‘volume’’ of
placebo, respectively. The equations describing the transit
model are shown in equation (6).

dPrec

dTime
¼ KS0 1 � Slope Cplaceboð Þ � K Prec

dT1

dTime
¼ K Prec � KT1

dT2

dTime
¼ KT1 � KT2

dHAMD

dTime
¼ KT2 � K HAMD

HAMD ¼ HAMD tð Þ þ eAdditive

ð6Þ

Determination of optimal study design

Denman et al.30 proposed informative study designs for the
three structural models of placebo effect in depression. The
optimization procedure was performed using WinPOPT.31

Commonly implemented study designs for clinical
depression involve a short run-in period with 6–8 weeks
treatment and no washout. HAM-D scores are assessed at
screening and then weekly thereafter. The optimal study
design for estimating the disease progression model para-
meters included a short run-in period, a 4-week treatment
period and 2 weeks washout. HAM-D scores are collected
over the entire 6-week period at 1, 2, 14, 25.3, 40, and 56
days. The last HAM-D observation time is therefore 14 days
after the last treatment. This design involves the same study
duration as the traditional design but provides better
information for model-based evaluation, and would not be
expected to negatively impact traditional empirical evalua-
tion. The present design was not optimized to estimate the
pharmacokinetics of an active drug.

Clinical trial simulation and evaluation

Two basic study designs were investigated: the traditional
study design for 6 weeks treatment with no washout
evaluations, and the design optimized for model evaluation.
These designs were evaluated using an empirical analysis. The
optimal design was also evaluated using model-based
analysis.

Empirical analysis. A series of studies were simulated to
assess the power of the optimal and empirical designs to
detect a true drug effect. The simulated studies included 200
subjects with a 1:1 placebo to active treatment allocation.

Prec
K K

T1
K

T2
K

HAMD-17

K

Figure 3 Schematic of two transit compartment model used to describe

the change of HAM-D scores over time. ‘‘Prec’’ represents a precursor status;

‘‘T1’’ and ‘‘T2’’ transit compartments; and HAMD the observed depression

score. ‘‘K’’ is the transit rate such that K ¼MTT/3.

Table 1 Pharmacokinetic parameter values for placebo
function

Parameter (units) Parameter name Value

Clearance (l/h) CLplacebo 0.125

Volume of distribution Vplacebo 1.00

Placebo effect Slope 0.046
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Subjects received daily placebo doses regardless of treatment
assignment. The active drug was administered daily. The
following two different drug effects were assessed: (1) a
weakly active drug that resulted in a 2 HAM-D unit reduction
over placebo and (2) a strongly active drug that resulted in a
5 HAM-D unit reduction over placebo. The effect of drug was
implemented as a simple offset model (equation (7)), and
hence the drug had no effect on the progression of the
depressive illness.

HAMD ¼ HAMD tð Þ � Active þ eAdditive ð7Þ
The parameters for the transit model and the active drug are

presented in Table 2. Two hundred replicates of the clinical
study were simulated and evaluated using the traditional
statistical evaluation involving calculation of the change from
baseline HAM-D (DHAM-D). Comparison of DHAM-D
between the placebo and active cohorts was undertaken using
a non-paired t-test (a¼ 0.05). The drug effect was considered
clinically significant if the mean DHAM-D was at least 2 U
greater than placebo. All patients in the simulated clinical
trials had HAM-D scores greater than or equal to 20 during
the 2-week run-in period.

Model-based analysis. A model-based evaluation was con-
ducted by simulating, and then fitting the data using the
transit model and evaluating the precision of the estimate of
the active drug effect. Only the optimal design using the
weakly active drug was evaluated. The pharmacokinetics of
the active drug were not considered in this evaluation.
Because the 25.3-day sampling time for the active drug is at
steady state, it was assumed that the dose would be a
sufficient statistic for the concentration. Furthermore, the
between-subject variability in this value (49%) should
account for variability in clearance, as well as any additional
residual variability on the HAM-D score associated with the
active drug over and above placebo.

The simulation and estimations were repeated 100 times
to provide summary statistics about the precision with which
the active drug effect could be estimated. All simulations were
performed using MATLAB Version 2006a (The Mathworks,
Natick, MA). NONMEM Version V Level 1.1 (Globomax,
Hanover, MD), compiled using Compaq Digital Visual

Fortran Version 6.6.3C (Hewlett Packard, Palo Alto, CA),
was used for model-based evaluations. The first-order condi-
tional estimation method was used for model evaluations.

RESULTS

Empirical analysis. The power to detect a difference between
the treatment and placebo using the standard empirical
analysis is shown in Table 3. For the weakly active drug, the
power is poor for both the empirical and the design
optimized for model development (41 and 46.5%, respec-
tively). For the strongly active drug, the power was 100% for
both study designs. These results suggest that using a design
that is optimized for model development does not negatively
impact on the ability to detect drug effect when using
standard empirical evaluation.

Model-based analysis. Using a model-based evaluation of
the data, the mean drug effect (7SE) was estimated to be
�1.97 (70.402), and the 95% confidence interval of the
mean drug effect ranged from �2.75 to �1.18 HAM-D units.
Frequency histograms for all of the parameters are shown in
Figure 4. The distributions for all parameters are narrow,
indicating that the drug effect was estimated with high
precision and sufficient confidence to show the weak drug
effect under the optimally designed conditions.

DISCUSSION

The stated purpose for most clinical trials is to test the null
hypothesis, which provides sufficient information for drug
approval. However, such analyses may not provide useful
information for use of the drug in a clinical setting.

Table 2 Parameter values for transit model and active drug pharmacokinetics

Parameter (units) Typical parameter value Parameter name Between-subject variability

HAM-D transit model parameters

S0 23 S0 7%

Mean transit time 11.2 days MTT —

HAM-D residual error — eAdditive 3.2

Active drug pharmacokinetic model parameters

Offset effect �2 Active 49%

HAM-D, Hamilton depression score. S0 was simulated using a truncated distribution. The minimum value of S0 was 20 HAM-D units and the maximum value of S0 was
30 HAM-D units.

Table 3 Comparison of expected results using a standard
evaluation of drug effect based on change from baseline HAM-
D at end of treatment

Placeboa

(%)
Weakly active

drug (%)

Strongly
active drug

(%)

Optimized design 0 41 100

Empirical design 0 46.5 100

HAM-D, Hamilton depression score. aNo difference expected therefore equivalent to
alpha error.
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Furthermore, when the end point being evaluated is highly
variable or when there is a substantial placebo response, the
power to detect a drug effect using traditional techniques is
often dramatically reduced. In the example illustrated here,
there was an approximately twofold decrease in the power of
traditional empirical analysis compared to a model-based
evaluation.

Disease progression modeling is an additional evaluation
tool that has an improved ability to detect a drug effect and
provides useful dosing information for prescribers. Modeling
is also an important component in the regulatory require-
ments for a new drug application.32,33 Models of disease
progression have been used for a wide variety of clinical
indications. For each indication, the functions used to
describe the progression must be based on the marker of
disease activity being evaluated. In some cases, an indicator
of drug activity that is considered acceptable for drug
approval may be the avoidance of an event (e.g., osteoporotic
fracture) rather than alteration in a biomarker of disease, in
which case disease progression modeling of the important
predictor(s) (e.g., bone mineral density) will yield informa-
tion about the probability of the event, given the drug
exposure and information regarding future monitoring of
treatment in the clinic. In some cases, the information
contained in the study design is also an important factor in
determining an appropriate model for describing disease
progression. Therefore, study conditions must be adequately
evaluated to ensure that physiologically relevant models can
be developed.

Information about the onset and offset of drug action is
likely to be important to understanding exposure response,

especially when the onset of drug activity may be over-
shadowed by placebo response. As active drug effect includes
the placebo effect, it is difficult to delineate these processes
without the aid of modeling. Informative study designs (e.g.,
those using formal optimal design techniques such as
D-optimality) improve the amount of information obtained
from a clinical trial.

In conclusion, model-based evaluation of disease progress
provides insight into drug activity. With appropriately
informative study designs, greater insight into the mechanism
and extent of drug effect on disease progression can be
evaluated.
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